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Abstract

Calibration is the process of using experimental data to gain more precise knowledge of sim-
ulator inputs. This process commonly involves the use of Markov-chain Monte Carlo, which
requires running a simulator thousands of times. If we can create a faster program, called an
emulator, that mimics the outputs of the simulator for an input range of interest, then we can
speed up the process enough to make it feasible for expensive simulators. To this end, we
implement a Gaussian-process emulator capable of reproducing the behavior of various long-
running simulators to within acceptable tolerance. This fast emulator can be used in place of a
simulator to run Markov-chain Monte Carlo in order to calibrate simulation parameters to ex-
perimental data. As a demonstration, this emulator is used to calibrate the inputs of an actual
simulator against two sodium-fire experiments.
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1 Introduction

1.1 Problem Description

Codes for simulating large, complex systems often have many input parameters to allow precise
specification of the exact initial state of the system under simulation. However, for most phenom-
ena we are interested in tracking, it is impossible to have exact knowledge of the entire initial
state. Given the nonlinear nature of many phenomena under simulation, an imprecise knowledge
of initial state can lead to unacceptably large uncertainty in simulation outputs. Also, sometimes
we have experimental output and are interested in knowing the input as precisely as possible for
its own sake.

To narrow down likely distributions of inputs, we can study the results of previous experiments. We
back-propagate our knowledge of experimental outputs to narrow down the possible input range.
The process of using experimental outputs to infer simulator inputs is known as calibration. This
work centered around implementing a fast, principled method for calibration that has previously
been used in [1] and others.

1.2 Application Space

The severe accident analysis group at Sandia National Laboratories (SNL) has been engaged in
model development, experimental validation, and accident reconstruction efforts for severe acci-
dent codes such as MELCOR [2]. The physics models within MELCOR were developed based
upon a combination of quantitative evaluations of separate effects test data or a combination of
quantitative and qualitative interpretations of integral effects tests data[3, 4]. The representative-
ness of these models are tested in MELCOR by reproducing the results a range of experiments
under a variety of conditions[5]. While model inputs with large uncertainties may be adjusted to
provide better agreement with the data, the impacts of these adjustments are difficult to propa-
gate from one experiment to the next. When subsequent uncertainty analyses are conducted, the
need for adjustments of default MELCOR parameters can provide invaluable information regard-
ing the shape and correlation structure of input uncertainty distributions if they are collected using
a consistent and coherent process.

The technique proposed in this report can also be applied to accident reconstruction efforts. Typi-
cally unknown parameters, such as water injection or venting effectiveness, are calibrating one at
a time in an attempt to reconstruct the accident. The major drawbacks of this historical approach,
that can be avoided using the methodology proposed in this report, include:

• Interference between input calibrations such that new calibrations distort the intended impact
of previous calibrations and
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• Uncharacterized uncertainty in the degree of sensitivity associated with the calibrated input
values.

While the proposed methodology was implimented at SNL with the primary intent of assisting
with ongoing accident reconstruction efforts, the complexity of that accident sequence and the
state of ongoing model development made initial deployment of the calibration tool on these ef-
forts impractical. As a result the methodology was deployed and debugged on a series of sodium
fire experiments conducted at SNL in circa 2010 [6] and modeled with the control volume code
Contain-LMR[7].

1.3 Methodology

Our belief about the reasonableness of an input state is a combination of domain knowledge and the
degree to which the input leads to an output close to experimental values. Melding these sources
of information is done most simply with Bayesian inference [8]. Since Bayesian inference works
with distributions, it allows us to produce “error bars” that give a sense of likely input ranges, as
opposed to a single, most likely input without accompanying knowledge of uncertainty. This gives
us a theoretically sound justification for narrowing our input range.

However, a well-known drawback of Bayesian inference is that all but the simplest posterior dis-
tributions are impossible to calculate analytically. Instead, many iterations of a Markov-Chain
Monte Carlo (MCMC) algorithm are typically run to draw from the posterior distribution [1, 8].
Each draw of MCMC requires a comparison of the simulator output with the experimental data,
which means we could need to run the simulator tens of thousands of times. For simulators that
take a few seconds, this is painfully slow. For simulators that take minutes, or even days, running
enough trials is infeasible.

To get around this problem, we model the input-output relationship of the simulator via an emulator
[1, 9]. An emulator is a routine that produces nearly the same results as the simulator, but which
can be evaluated much more quickly than the simulator. One typically wants an emulator to be
several orders of magnitude faster than the corresponding simulator. A very popular choice of
emulator is the Gaussian process (GP). This type of emulator is straightforward to understand and
implement. A GP can be tuned by a user to fit a wide variety of shapes, which allows GPs to
emulate many real-world functions effectively.

The process of accelerating code calibration via emulators is as follows. A sample of inputs is
drawn from a user-specified range, and the simulator is run on each input to produce training data
for the emulator. The emulator then learns the input-output relationship from this training set.
Once the emulator has been trained, it is validated against withheld runs of the simulator that were
not used to train it. If this step is skipped, we have no way of knowing whether conclusions drawn
from the emulator are valid. If the emulator is found to be a good enough match for the simulator,
then we proceed to calibration.
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The calibration step requires experimental data. This step is a run of MCMC, which requires a
prior probability and a likelihood. The prior probability is user-specified and encodes our do-
main knowledge about probable inputs. The likelihood is a comparison between emulator output
and experimental data. The calibration step results in a representative sample from the posterior
distribution of the inputs, which can be plotted to determine empirically the shape of the input dis-
tribution. This distribution will be optimal in the sense that it uses the experimental data to narrow
down the input range as much as possible.

The work related to this report produced MATLAB code to perform emulation and validation, along
with examples of the calibration process.

1.4 Structure

The remainder of this report is divided in the following way:

Section 2: Overview of Emulators and MCMC

Section 3: Process of Code Calibration with Emulators

Section 4: Demonstration with Sodium-fire Data

Section 5: Future Work - Applications to 1F2

Section 6: Conclusion

Appendix A: Code Dependencies
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2 Background

To use the calibration code effectively, it is necessary to have some understanding of Gaussian
processes and MCMC.

2.1 Gaussian Processes

A Gaussian process is an infinite-dimensional generalization of the multivariate normal (MVN)
distribution [10, 11, 12]. Gaussian processes are fully described by their mean and covariance
functions, which serve an analogous purpose to the mean vector and covariance matrix of a MVN
distribution. The mean function, µ(x), provides the expected value for any input x. The covariance
function, Σ(x,x′), represents the relationship between outputs according to their corresponding
inputs x and x′. For any finite set of input vectors {xi} with i = 1 . . .n, the output of a Gaussian
process is a MVN distribution with mean vector µ and covariance matrix Σ such that µi = µ(xi)
and Σij = Σ(xi,xj).

To make predictions with a GP, we begin with a set of training inputs and outputs {xtr,ytr}. We
then select a set of test inputs x∗ at which to evaluate the model. We assume that our test outputs y∗
are drawn from the same distribution as our training outputs, so we can write the joint distribution
as [

ytr
y∗

]
∼N

([
µtr
µ∗

]
,

[
Σtr Σ∗
Σ>∗ Σ∗∗

])
,

where

µtr = µ(xtr)
µ∗ = µ(x∗)
Σtr = Σ(xtr,xtr)
Σ∗ = Σ(xtr,x∗), and

Σ∗∗ = Σ(x∗,x∗).

Because we are working with a normal distribution, it is straightforward to find the distribution of
the test outputs conditioned on the known information. This posterior distribution is also MVN
and is written

y∗|ytr ∼N
(
µ∗+ Σ>∗ Σ−1

tr (ytr−µtr),Σ∗∗−Σ>∗ Σ−1
tr Σ∗

)
.

Although we have an analytical representation of our posterior distribution conditioned on our
training data, Gaussian processes have the major drawback of running in O(n3) time, where n is
the number of training inputs. This is because finding the posterior distribution requires a Cholesky
factorization of the training covariance matrix, as can be seen by the Σ−1

tr term in the equation
above.
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2.1.1 Hyperparameters

A Gaussian process is considered a non-parametric model because it uses all of its training data to
make decisions rather than distilling the data down to a few parameters. However, we can greatly
improve the flexibility of a GP by using “hyperparameters”. A hyperparameter is a parameter
affecting the behavior of the mean function or, more commonly, the covariance function. For
example, a very common covariance function used with GPs is the squared-exponential kernel,
given by

Σ(x,x′) = σ2
y exp

(
−(x−x′)2

2l2

)
+σ2

nδii′ .

This kernel has three hyperparameters: σy, l, and σn. These three hyperparameters help the kernel
adapt to different signal variance, input length scales, and signal noise, respectively. Varying them
can entirely change the sort of function produced by a GP, even with the exact same input data.
The usefulness of these hyperparameters is that they can be learned and thereby help the GP to
adapt to the training data. Without hyperparameters, covariance functions would be much more
limited in the relationships they could capture, and GPs would simply be too inflexible to be useful
for most practical problems.

Learning the best hyperparameters from the training data can be done in one of several ways. One
way is to set prior distributions over the hyperparameters themselves (hyperpriors) and use MCMC
to find the posterior distribution. This has the benefit of giving uncertainty bounds on the hyper-
parameters. However, it tends to be quite slow. Another way is to find the best hyperparameters
via maximum likelihood. Estimation by maximum likelihood is much faster and was the method
of choice for this work. However, it does have the drawback of not producing the uncertainty
estimates provided by MCMC.

2.1.2 Covariance Functions

Choosing the covariance function is the most important factor in fitting a function with a GP.
Different covariance functions lead to completely different shapes of functions predicted by the
emulator. Finding a covariance function that leads to a good fit of the data will likely be a process
of trial and error, especially for users with little experience working with GP emulators. For this
reason, it may be helpful to train and validate on a subset of the data to quickly determine likely
candidates for covariance functions. Then, only emulators with the best covariance functions can
be trained on and validated against all of the relevant data, and from there the best emulator can be
chosen for the actual calibration.
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2.2 Markov-Chain Monte Carlo

The Markov-Chain Monte Carlo (MCMC) procedure is used to draw samples from a distribution
for which no closed form is available. Only a basic introduction will be given here. For the
interested reader, there is a large body of literature available for understanding MCMC, such as
[13]. When performing calibration, our desired result is the posterior probability distribution of the
input parameters given the experimental data, written P (θ|y), where θ is the vector of parameters
and y is the experimental output. To find this distribution, we first set a prior distribution P (θ)
over our parameters based on our domain-specific knowledge of the problem. We then define the
likelihood of output y given parameters θ, denoted P (y|θ). In the case of a Gaussian-process
emulator, we will assume the likelihood is Gaussian. Finally, we want to use our evidence and
corresponding likelihood to update our prior belief according to Bayes’ Rule. Studying Bayes’
Rule,

P (θ|y) = P (y|θ)P (θ)∫
P (y|θ)dθ ,

we see that we need to evaluate the integral in the denominator, which in general is not possible.
The power of MCMC is that it allows us to draw samples from our posterior using just our prior
and likelihood, and to do so without evaluating this infeasible integral.

The output of MCMC is not a closed form for the posterior probability distribution. Instead,
it produces a set of samples from the posterior that can be plotted as a histogram or eCDF to
determine the shape of the distribution. The set of samples can also be used to find parameters
such as the mean or standard deviation of the posterior distribution.

There is a large variety of MCMC algorithms, but most of them follow similar principles. The goal
of MCMC is to build a Markov chain that has steady-state density equal to the desired posterior
density, denoted π(θ). Once such a Markov chain is created, it is run for as many iterations
as desired, and the iterates form a sample from the posterior distribution. The most important
elements of the Markov chain are the proposal density q(θ) and the decision rule. At each step i of
the Markov chain, the function q proposes a value θ̂i+1 for the next iterate. One simple proposal
density is a uniform distribution about the current value. Then, the decision rule is applied to
determine whether to accept θ̂i+1. A simple decision rule is to accept the iterate if its posterior
probability is greater than the current iterate, and otherwise to accept it with a probability equal to
the ratio of the posterior probabilities. That is, the new iterate θ̂i+1 is accepted with probability

min
(
π(θ̂i+1)
π(θi)

,1
)

= min
(
P (y|θ̂i+1)P (θ̂i+1)
P (y|θi)P (θi)

,1
)
.

If the new iterate is accepted, then θi+1 = θ̂i+1. Otherwise, the Markov chain stays in the same
spot, so θi+1 = θi. This rule allows us to use the unknown posterior density when making deci-
sions because the denominator, which was the only problematic part of the Bayes update, cancels
out.
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The downside to MCMC is that we can never know with certainty that it has worked correctly. For
a variety of reasons, such as a bad choice of q, the convergence of the Markov chain to the true
distribution can be slow or even nonexistent. Determining whether a MCMC run has successfully
converged requires looking at the iterates to ensure they did not stagnate and they had low auto-
correlation, among other things. Diagnosing problems with MCMC is beyond the scope of this
report, and the unfamiliar reader should consult related statistics literature.

This work did not involve implementation of MCMC. The user may choose any MCMC library
that suits their needs. The library used for this work was an open source ensemble MCMC sam-
pler based on [14] and [15] and available from https://github.com/grinsted/gwmcmc. It was
chosen for several reasons, including speed, documentation, and a permissive open source license,
but the main benefit was that it worked for different problems without requiring tuning.
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3 Calibrating with GPEmulator Class

This section will explain the use of the GPEmulator class for code calibration. First, we describe
the classes used for creating and validating the emulator. Then, we explain the use of these classes
as part of a larger code-calibration program.

3.1 GPEmulator

The GPEmulator class is constructed with the training input and output for the emulator. It also
requires that the user specify which of its built-in mean and covariance functions should be used.
Currently, the options for the mean function are quadratic, linear, constant, zero, and exponential.
The options for covariance function are squared-exponential and Matern 3/2.

The training input to a GPEmulator must be in a specific format that is most easily explained by an
example. Assume that we have one control variable, which represents time, and two parameters,
θ1 and θ2. Our simulator runs for time values from 0 to 2 in one-second increments. We have
choose to train on the following pairs of parameters θ: (6,8), (6,9), (7,8). The training inputs for
the GPEmulator would be:



0 6 8
1 6 8
2 6 8
0 6 9
1 6 9
2 6 9
0 7 9
1 7 9
2 7 9


.

That is, for each set of parameters, we must have a row for that set for each time variable. This
is one drawback of GP emulators: the input size grows quickly with dimension, and there is an
O(n3) cost for factoring the covariance matrix, where n is the total number of rows in the in-
put. The corresponding training output would be a single column vector containing the stacked
simulator output time series for each parameter set. A MATLAB function, cartesian general, is
provided that takes as input a vector of control variables and a matrix of parameters and produces
the appropriate input for a GPEmulator. For example, to produce the training input above, a user
would call

cartesian general


0

1
2

 ,
6,8

6,9
7,8
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It is usually good practice to normalize the inputs to a GP so they have zero mean and unit variance.
This normalization is done automatically by GPEmulator for the training input, and all later inputs
used for prediction or likelihood are also automatically normalized using the same mean and stan-
dard deviation used to normalize the training inputs. The user can simply pass in the parameters
they actually used and need not deal with normalization.

When the GPEmulator is created, it automatically trains itself on the training data to infer the hy-
perparameters. The maximum likelihood hyperparameters are found via optimization. Once hyper-
parameters have been chosen, the covariance matrix for the GP is created and factored. When the
training process is complete, the GPEmulator is ready to make predictions or be used in MCMC.

Before the GPEmulator can safely be used, however, it should be run through a set of validation
tests to ensure it matches the simulator. The validation tests must be performed with a set of data
that was not seen by the emulator during training. There is a utility class, GPValidator, that
accepts a set of validation data and runs a variety of diagnostics on a GPEmulator. This class will
be described in more depth in the next section. Once a user has performed validation tests on the
emulator and is satisfied with its performance, the user can proceed to the calibration process.

A GPEmulator has four public functions available: predict, covariance, errorbars, and likelihood.
Each of predict, covariance, and errorbars takes posterior inputs in the same format as the
inputs described above. The predict function returns the expected value of the GP at the in-
puts. The covariance function returns the posterior covariance matrix. The errorbars function
returns half of the width of the ninety-five percent credible interval for the prediction, which is
helpful when plotting the uncertainty in the GP prediction. The final function, likelihood, ac-
cepts two inputs: posterior inputs, as described above, and posterior outputs. This function gives
the likelihood of the posterior outputs given the posterior inputs and the GP model trained on the
training inputs. This is the function that, given a set of experimental outputs, can be used with
MCMC to find the distribution of inputs.

The GPEmulator was designed to be similar to the RegressionGP class available in MATLAB,
though GPEmulator has fewer options. The RegressionGP class, however, could not be used to
run MCMC with the emulator because the class did not provide a posterior likelihood function or
the factorized training covariance matrix that is used in calculating the posterior likelihood.

3.1.1 GPEmulatorGPML

There is a popular open source library for GPs, GPML, that provides everything needed to perform
calibration. Our code provides a wrapper around GPML called GPEmulatorGPML. This class has
exactly the same interface as GPEmulator, so they can easily be swapped for one another in the
same code. To maintain this compatibility and ease of use, the wrapper provides access to only a
subset of GPML.
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The benefit of interfacing with GPML is that is provides access to more options for covariance
functions, which allows for more flexibility in the emulator. There are two downsides, how-
ever. The first and most important downside is that GPEmulatorGPML is noticeably slower than
GPEmulator for calibration. The second is that GPML does not provide access to the factorized
training covariance matrix, which is used to calculate the posterior covariance matrix. This means
that the covariance function is not available with a GPEmulatorGPML. Also, several of the valida-
tion tests provided by GPValidator require the covariance matrix, and thus cannot be performed.
Instead, a GPEmulatorGPML is validated with a GPValidatorGPML, described briefly in the next
section, which runs fewer tests. Due to these drawbacks, we recommend using GPEmulator when-
ever possible and switching to GPEmulatorGPML when needed to model more difficult simulators.

3.2 GPValidator

The GPValidator class runs a GPEmulator through a series of diagnostics described in [16]. It ac-
cepts as inputs a GPEmulator, validation inputs in the same format as the inputs to a GPEmulator,
the control variables from the validation inputs, and the validation outputs corresponding the the
validation inputs.

As a concrete example, if we with to validate at times 1 through 3 and parameters (4,6), (4,7), and
(5,7), we would use the following call:

GPValidator

emulator,cartesian general


1

2
3

 ,
4,6

4,7
5,7


 ,
1

2
3

 ,val outputs

 .

When a GPValidator is created, it automatically calculates validation errors and decorrelated
validation errors. After the errors are calculated, the user can check diagnostics described in [16],
as well as simply plotting the emulator output against the validation output against the validation
inputs. It is recommended to run the display all routine, which runs all available diagnostics
and presents them to the user. Section 3 of [16] explains how to interpret each of the diagnostics.

3.2.1 GPValidatorGPML

To validate a GPEmulatorGPML emulator, described in a previous section, the GPValidatorGPML
class is required. This class does not run any of the diagnostics in [16]. Instead, it simply plots the
emulator vs the simulator on the validation data to help the user spot any issues. It is created and
run with exactly the same interface as a GPValidator.
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3.3 Usage for Code Calibration

This subsection will describe the process of calibration using a GPEmulator from beginning to
end. The first step is to decide on appropriate ranges for each input of the GP. There will usually
be at least one control input, which is often time. The range for this variable should be known
based on the experimental data. Then, an appropriate distribution is chosen separately for each
parameter, and a Latin-hypercube sample is taken over the distributions. MATLAB has a built-in
routine, lhsdesign, that can be used for this. The distributions for the parameters should be
chosen to cover all likely values, but a simulator run must be performed for each set of parameters,
so there is a tradeoff between runtime and coverage.

Once the parameter combinations are decided on, the simulator is run for each parameter combi-
nation. Then, the inputs and outputs must be shaped into a form recognized by the GPEmulator
class, as described in the GPEmulator section. The majority of the code will likely be dedicated to
creating the inputs and outputs, since the rest of the process is quite straightforward.

After the GPEmulator is created, it must be examined using a GPValidator, which requires choos-
ing a set of validation inputs. These inputs should be from within the same general range as the
training data, but the parameters must not have been used for training the emulator, although the
control variables will likely be the same. The simulator must also be run for each set of valida-
tion parameters to produce the validation output that the GPValidator compares against. Finally,
before being passed to the GPValidator, the validation inputs must be put into the same form as
training inputs using cartesian general. Once the validation inputs and outputs are available
and in the correct form, the GPValidator is created and run, and the user can inspect the output to
confirm that the GPEmulator is working well.

The process of creating and validating an emulator is shown graphically in Figure 1.

After the user has a validated GPEmulator, they can begin calibration with MCMC. First, a log
prior function is specified. This function should accept only parameters as input, and should not
accept the control variables. A log likelihood must also be specified, and must take the same inputs
in the same order as the log prior. The log likelihood will generally be an anonymous function that
calls the emulator likelihood function with the control variables and the posterior output already
specified. The posterior output is the experimental output, which will need to be read in from a
file.

Once the prior and likelihood functions are available, the MCMC function is called with a suit-
able initial guess. This will return the desired distribution of calibrated parameters. As is the
case with any MCMC routine, the user should check the output to ensure good mixing and low
autocorrelation of the output before trusting the results.

The process of creating the inputs to the MCMC routine is displayed in Figure 2.
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Ranges for training parameter chosen and
LHS used to create training inputs

Simulator run on training inputs

Control variables and
training set inputs and outputs

written to csv files

Some data withheld for validation
in separate csv files

% Create emulator
control = csvread('control.csv');
params_tr = csvread('params_tr.csv');
output_tr = csvread('output_tr.csv');

inputs_tr = cartesian_general(control, params_tr);
emulator = GPEmulator(inputs_tr, outputs_tr, 'Matern3/2', 'Zero');

% Create validator
params_val = csvread('params_val.csv');
outputs_val = csvread('outputs_val.csv');

inputs_val = cartesian_general(control, params_val);
validator = GPValidator(emulator, inputs_val, control, outputs_val);
Validator.display_all();

Figure 1: Creation and Validation

3.3.1 Using Multiple Experiments

A useful feature of the calibration process is that a simulator can be calibrated against more ex-
periments as they become available. The process is theoretically straightforward: once we have
calibrated against an experiment, our posterior is our new current belief, so we can take our poste-
rior as the prior for all future experiments. Another way to look at this is that since we have seen
the experimental data, all future beliefs are conditioned on that experiment even though we do not
usually write this out explicitly.
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% Create log-likelihood function
likelihood = @(theta) emulator.likelihood(cartesian_general(control_ex, theta), outputs_ex);

% Read experiment data from file
control_ex = csvread('control_ex.csv');
outputs_ex = csvread('outputs_ex.csv');

% Choose log-prior
prior = @(theta) log(normpdf(theta, mean_prior, std_prior));

Pass prior and likelihood to MCMC routine

Figure 2: Preparing for MCMC

If the posterior parameters appear to follow an analytically representable distribution, such as a
normal distribution with some mean and covariance that we can find from the MCMC output, then
we can approximate our posterior with this distribution and our calculations become simple. If,
however, the distribution does not appear to match a common probability distribution, then we need
to represent our probability density function (PDF) empirically. In this work, we did so by first
creating an empirical cumulative distribution function (eCDF). We then used this eCDF to create
an empirical piecewise-linear PDF. Example MATLAB code for obtaining the PDF and evaluating
the new prior probability of a parameter is given below:

[prior cdf, prior x] = ecdf(draws from mcmc);

prior x(1) = prior x(1) - 1e-10;

prior distribution = makedist(’PiecewiseLinear’, ’x’, prior x’, ’Fx’, prior cdf’);

prior distribution.pdf(some param);
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4 Demonstration with Sodium-fire Data

This section briefly describes the use of our calibration code on a real simulator with actual exper-
imental data. The simulator used was CONTAIN-LMR [17, 7], a tool used for modeling sodium
fires. We had two related experiments to calibrate the code against, referred to as the T3 and T4
experiments [6].

Because most of the experimental setup stayed consistent between T3 and T4, we were able to
choose inputs that should be the same for both experiments and use the data from both experiments
to calibrate these parameters sequentially. This ability to update our distributions whenever new
data is available is a powerful feature of Bayesian calibration.

We simultaneously calibrated three parameters of CONTAIN-LMR against the experiments. Each
parameter began with a different prior distribution. The calibration process was run first with the
T3 data. This updated the distributions of the three parameters to account for the experiment.
These updated distributions from the T3 calibration became the priors, representing our additional
knowledge of the system learned from T3, and the calibration process was repeated with T4. The
final output distributions from the T4 calibration represent our best knowledge of the parameters
given all of the available experimental data.

Figure 3 compares the emulator against the simulator on some of the validation data for the T3
experiment. The fit is not perfect, but about 91% of the simulation data points lie within the 95%
confidence interval of the emulator, and the emulator was deemed adequate for calibration. The
validation results for T4 were similar and are not shown.

The effect of the sequential calibrations on our parameter distributions is shown graphically in
Figures 4-6. Since the posterior distribution after the T3 experiment was not a close match for a
common distribution, an empirical distribution was created as described in Section 3.3.1 and used
as the prior for the T4 calibration. We see from the plots that each experiment helps to narrow the
probability down into more specific regions for the three parameters, which is what we would hope
to happen.
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Figure 3: Validation of emulator for T3

Figure 4: CDFs of flat priors
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Figure 5: Posterior CDFs after T3

Figure 6: Posterior CDFs after both calibrations
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5 Future Work - Applications to 1F2

This section will describe the potential benifits of the Bayesian calibration method described in
this report on the 1F2 accident reconstruction analysis. Information on the 1F2 accident, including
the offical data-sets, can be found at the fdata website[18]. The 1F2 accident reconstruction efforts
are currently ongoing; thus the results presented in this section are not the most current 1F2 recon-
structed results. These preliminary results are an illustrative representation of the current approach
and the demonstrate opportunity presented by the Bayesian calibration technique.

5.1 Current Calibration Approach

In addition to the phenomena related accident progression uncertainties, many accident sequence
and timing uncertainties exist in the 1F2 reconstruction analysis. Key questions in the first 80 hours
of the accident may include:

• Was the fraction of the Reactor Core Isolation Cooling (RCIC) injection rerouted back to the
Condensate Storage Tank (CST):

– only rerouting RCIC injection during RCIC throttling or

– continually redirecting RCIC injection to the CST throughout CST suction?

• How much did steam quality reduce RCIC injection performance once the Main Steam Line
(MSL) flooded?

• Did the CST isolate when TEPCO states (13.5 hours to 14.2 hours) or did the CST isolate
when the Reactor Pressure Vessel (RPV) pressure data starts to increase at approximately 11
hours?

• If the test line was redirecting RCIC injection to the CST during the CST suction, did that
test line continue to redirect RCIC injection to the CST continue during WW suction?

• Are the early RPV pressure readings in error due difficulties in re-energizing equipment?

• Was the torus room flooded during the initial portion of the accident? If so:

– When did the flooding occur?

– How much flooding occurred?

– When did the flooding stop?

Currently, simple Monte Carlo analyses are being used to determine the impact of various input
parameters on the code output. The input distributions for the current 1F2 calibration approach are
bounded not by physical constraints on the input parameters. Instead they are tailored by the ana-
lyst to improve batches of 20-50 MELCOR simulation results when compared to instrumentation
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data. An iterative approach is taken where visual trends in the input parameter’s influence on the
output horsetails are noted and the input distributions are adjusted accordingly to provide a better
fit to the experimental results for the next batch of 20-50 MELCOR simulations. Unfortunately,
what constitutes a better fit to the instrumentation data may vary from analyst-to-analyst and/or
day-to-day. Additionally, there is little to no official acknowledgment given to the impacts that
drift in instrumentation accuracy throughout the transient may have on the definition of a good fit
to experimental data-sets.

The current calibration approach samples all uncertain parameter’s in unison, but compares the
agreement with data in isolation; even though input parameter interactions many impact various
portions of the accident progression. Figures 7, 8, 9, and 10 illustrate this point with RPV pressure
trends.

1. Figure 7 shows that that larger parameters for the higher void fraction operational range
parameter, c, allow for higher RCIC flow rates which monotonically cools off the water in
the RPV more quickly than smaller values for c. This monotonic influence on RPV pressure
all but disappears upon the occurrence of CST switch-over.

2. Figure 8 shows that hours after CST switch-over, RPV pressure decreases approximately
monotonically with later switch-over times.

3. Figure 9 shows that the RCIC pump parameter for the void fraction operational range term,
c, nearly monotonically influences RPV pressure trends between 20 and 45 hours.

4. Figure 10 shows that between 40 and 70 hours the torus room flooding timing monotonically
influences RPV pressure.

While simple Monte Carlo can show the existence of these trends, the process for manually ad-
justing the sample ranges and accounting for temporal dependencies can be time-consuming. The
current calibration approach requires expert judgment regarding the suitability of overshooting the
1F2 data in some areas and undershooting the 1F2 data in other areas. The calibration method
proposed in this report will use GP meta models to help automate and formalize these judgments
through a scrutable and efficient process.

5.2 Correlated Unequal Data-sets

One major calibration related question that remains unsolved is: How should multiple instrumen-
tation data-sets which are inherently correlated be processed though the calibration model?

Examine the correlations evident in the Wetwell flooding distribution’s impact on RPV pressure in
Figure 10 and compare those results to the Wetwell pressure in Figure 11 and the Drywell pressure
in Figure 12. All three volumes are in communication with each other during the first 70 hours
of the accident; thus their pressure trends should, and do, appear correlated. If one ignores this
correlation, the prototypical Bayesian calibration approach would be to:
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Figure 7: 1F2 Reactor Pressure Vessel (RPV) Pressure Horse Tails Color Coded by Reactor
Core Isolation Cooling (RCIC) Pump Void Fraction Operating Range with Suction from the
Condensate Storage Tank(CST)

Figure 8: 1F2 Reactor Pressure Vessel (RPV) Pressure Horse Tails Color Coded by Conden-
sate Storage Tank Isolation Timing

1. Assume a prior distribution for calibration parameters.
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Figure 9: 1F2 Reactor Pressure Vessel (RPV) Pressure Horse Tails Color Coded by Reactor
Core Isolation Cooling (RCIC) Pump Void Fraction Operating Range with Suction from the
Wetwell (WW)

Figure 10: 1F2 Reactor Pressure Vessel (RPV) Pressure Horse Tails Color Coded by Flood
Timing

2. Take the assumed prior distribution and apply the calibration approach for RPV pressure
data.
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3. Take the RPV pressure data informed posterior distribution and using it as the prior distribu-
tion for Wetwell Pressure data.

4. Take the Wetwell pressure data informed posterior distribution and using it as the prior for
Drywell pressure data.

5. Continue daisy-chaining experimental data-sets until one is left with a final posterior distri-
butions on the calibration parameters.

6. Running Monte Carlo sampling on this posterior distribution should give the analyst the best
possible understanding of the accident progression for that set of input parameters.

Figure 11: 1F2 Wetwell (WW) Pressure Horse Tails Color Coded by Flood Timing

This approach likely gives too much weight to the overall experimental data-sets due to the unac-
counted for correlation structure in the the data-sets. This known-unknown error may be acceptable
given the large uncertainties and unformalized calibration approach currently employed on the ac-
cident reconstruction effort.

5.3 Additional 1F2 Information Will Increase the Accuracy of this Tech-
nique

A key input-set to the Bayesian calibration approach is the uncertainty in the experimental data-set
used for the correlation. Any initial calibration trials will use assumed uncertainty distributions for
this instrumentation error. The following information will be extremely valuable for improving the
accuracy of future input parameter uncertainty calibrations.
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Figure 12: 1F2 Drywell (DW)Pressure Horse Tails Color Coded by Flood Timing

• Initial uncertainties in 1F2 instrumentation,

• Calibration ranges of 1F2 instrumentation,

• Degradation of instrumentation calibration, and thus increase in instrumentation uncertain-
ties, as a function of time and environment, and

• Uncertainties in the timing of data collection efforts, especially in the early and sporadic
phase of data acquisition.

5.4 Summary and Future Work

The Bayesian calibration approach can potentially formalize, streamline, and accelerate the overall
calibration process for the 1F2 accident reconstruction. The Bayesian calibration process has not
yet been tested with the 1F2 model because the 1F2 model is slower, more complicated. There
are also larger uncertainties associated with the 1F2 instrument data than there were with the SNL
sodium fire experiments. Now that the Bayesian Calibration development process is in a semi-
finalized state, it is expected that the implementation of the Bayesian calibration approach on 1F2
accident sequence input parameters will begin in the Fall of 2016.
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6 Conclusion

We have implemented fast Bayesian calibration of complex computer codes using a Gaussian
process emulator. Our research produced fast, easy-to-use code for GP emulation and validation.
Along with an open source MCMC library, our emulator was able to calibrate the inputs of a
sodium-fire simulator to related experimental data and significantly decrease uncertainty in the
input parameters. In addition to our fast emulator, we wrote a compatible wrapper to a powerful
open source GP library that provides the flexibility needed for emulating even more complicated
simulators at the cost of some speed.

By following the process laid out in this report with the help of our code, we hope that researchers
will be able to give a principled justification of their code parameters based on validation experi-
ments and to decrease the output uncertainty of their simulations by improving their knowledge of
inputs.
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A Appendix A: Code Dependencies

The Bayesian Calibration code used in this report has some external dependencies that need to be
linked to in MATLAB in order for the code to execute. These dependencies are:

• GPML The optional GPEmulatorGPML needs files from the following link - http://www.
gaussianprocess.org/gpml/code/matlab/doc/

• GWMCMC One of many acceptable MCMC packages can be found at the fol-
lowing link - https://www.mathworks.com/matlabcentral/fileexchange/
49820-ensemble-mcmc-sampler

• MATLAB Statistics and Machine Learning Toolbox
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